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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The finite expectation case

I will compare some limit theorems in the independent identically
distributed (i.i.d.) setting with different dynamical systems.

Generally, let (Xn) be a sequence of identically distributed random
variables with distribution function F (i.e. F (x) = P (X1 ≤ x)) and set
Sn :=

∑n
k=1 Xk .

Theorem 1.1 (Strong law of large numbers)

Let (Xn) be a sequence of i.i.d. random variables with E (X1) <∞. Then

lim
n→∞

Sn
n

= E (X1) a.s.

This holds no longer true if E (X1) =∞.

Theorem 1.2 ([Feller, 1946, Chow and Robbins, 1961])

Let (Xn) be a sequence of i.i.d. random variables with E (X1) <∞.
Given any sequence of constants (dn)n∈N with dn > 0 for all n, then

lim sup
n→∞

Sn
dn

=∞ a.s. or lim inf
n→∞

Sn
dn

= 0 a.s.
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The finite expectation case

In the ergodic case we have analog statements:

Theorem 1.3 (Ergodic Theorem [Birkhoff, 1931])

Let (Ω,B, µ,T ) be an ergodic, probability measure preserving dynamical
system and let f : Ω→ R. If (Xn) =

(
f ◦ T n−1

)
and E (X1) <∞, then

lim
n→∞

Sn
n

= E (X1) µ− a.s.

Theorem 1.4 ([Aaronson, 1977])

Let (Ω,B, µ,T ) be an ergodic, probability measure preserving dynamical
system and let f : Ω→ R. Further, let (Xn) =

(
f ◦ T n−1

)
and

E (X1) =∞. Given any sequence of constants (dn)n∈N with dn > 0 for
all n, then

lim sup
n→∞

Sn
dn

=∞µ− a.s. or lim inf
n→∞

Sn
dn

= 0 µ− a.s.
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

We might obtain a strong law of large numbers after trimming.

Let π ∈ Sn be pointwise defined such that

Xπ(1) ≥ . . . ≥ Xπ(n) is a rearrangement of X1, . . . ,Xn.

In some literature the order statistics is also denoted by
Xn,1 ≥ . . . ≥ Xn,n.
For the following let (bn) always be a sequence of numbers in N0 not
exceeding n and set

Sbn
n :=

n∑
i=bn+1

Xπ(i).

Definition 2.1

The sum Sbn
n is called

lightly trimmed sum if bn = r ∈ N,
intermediately (moderately) trimmed sum if limn→∞ bn =∞ and
bn = o (n),
heavily trimmed sum if bn ∼ κ · n, 0 < κ < 1.
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

Let us first look at the example F (x) = 1− 1/x .

Then E (X1) =∞ and we don’t obtain a strong law of large
numbers.
If (Xn) are i.i.d. it follows from [Kesten and Maller, 1992,
Application of Theorem 2.3] that

lim
n→∞

S1
n

n log n
= 1 a.s.

If (Xn) are sufficiently fast ψ-mixing it follows from
[Aaronson and Nakada, 2003, Application of Theorem 1.1] that

lim
n→∞

S1
n

n log n
= 1 a.s.
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

But which dynamical systems are ψ-mixing?

We give the probably first example of a dynamical system proving strong
laws of large numbers under trimming.
Consider the unique continued fraction expansion of an irrational

x ∈ [0, 1] given by x := [a1 (x) , a2 (x) , . . .] :=
1

a1 (x) +
1

a2 (x) +
. . .

.

We consider a1, a2, . . . as random variables. Define

φ : [0, 1]→ R>0 T : [0, 1]→ [0, 1] ,

x 7→ b1/xc x 7→ 1/x mod 1.

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T (x)

Then an (x) = φ ◦ τn−1 (x).
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

Lemma 2.2 ([Diamond and Vaaler, 1986])

If Xn := an, n ∈ N, then we have that

lim
n→∞

S1
n

n log n
=

1
log 2

a.s.

(with respect to Lebesgue or γ, the invariant measure with respect to the
Gauss system.)

The continued fraction digits are a special example of exponentially fast
ψ-mixing random variables and the results by Aaronson and Nakada
could be applied.
However, ψ-mixing is a strong condition on dynamical systems and not
all interesting dynamical systems are ψ-mixing...
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

... and light trimming is not always enough, either!

Define

φ : [0, 1]→ R>0, T̃ : [0, 1]→ [0, 1]

x 7→ b1/xc x 7→ 2x mod 1.

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T̃ (x)

Theorem 2.3 ([Haynes, 2014, Theorem 4, generalized])

If Xn = φ ◦ T̃ n−1, then for all positive valued sequences (dn)n∈N and
k ∈ N we have (with respect to the Lebesgue measure λ) that either

lim sup
n→∞

Sk
n

dn
=∞ a.s. or lim inf

n→∞

Sk
n

dn
= 0 a.s.
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

Comparison: Continued fractions (left) / doubling map (right)

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T (x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T̃ (x)

Main difference: The observable φ obeys the structure of the underlying
dynamics T but not of T̃ .
If φ ◦ T̃ n > 1 then φ ◦ T̃ n+1 =

⌊
φ◦T̃ n+1

2

⌋
.

So let’s try intermediate trimming!
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The example P (X1 > x) = L(x)/x

Comparison: Continued fractions (left) / doubling map (right)

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T (x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T̃ (x)

Main difference: The observable φ obeys the structure of the underlying
dynamics T but not of T̃ .

If φ ◦ T̃ n > 1 then φ ◦ T̃ n+1 =
⌊
φ◦T̃ n+1

2

⌋
.

So let’s try intermediate trimming!

11 / 23



Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

Comparison: Continued fractions (left) / doubling map (right)

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T (x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T̃ (x)

Main difference: The observable φ obeys the structure of the underlying
dynamics T but not of T̃ .
If φ ◦ T̃ n > 1 then φ ◦ T̃ n+1 =

⌊
φ◦T̃ n+1

2

⌋
.

So let’s try intermediate trimming!

11 / 23



Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

Comparison: Continued fractions (left) / doubling map (right)

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

2

4

6

x

φ(x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T (x)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

T̃ (x)

Main difference: The observable φ obeys the structure of the underlying
dynamics T but not of T̃ .
If φ ◦ T̃ n > 1 then φ ◦ T̃ n+1 =

⌊
φ◦T̃ n+1

2

⌋
.

So let’s try intermediate trimming!
11 / 23



Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

We define Ψ :=

{
u : N→ R>0 :

∞∑
n=1

1
u (n)

<∞

}
.

Theorem 2.4 ([S., 2018, Theorem 1.1 & 1.2])

Let (Xn) = (φ ◦ T̃ n−1) and let limn→∞ bn/ log1/4 n = 0. Iff there exists
ψ ∈ Ψ such that

bn :=

⌊
logψ (blog nc)− log log n

log 2

⌋
,

then there exists a norming sequence (dn) such that

lim
n→∞

Sbn
n

dn
= 1 a.s. (1)

In case that (1) holds we have that dn = n · log n.

In particular we have that bn = bu · log log log nc for all n ∈ N is a
possible trimming sequence if and only if u > 1/ log 2.
It is work in progress to determine limit laws for more general settings
than the doubling map and the observable φ.
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/x

What if we consider other non-negative random variables such that
P (X1 > x) = L(x)/x with L a slowly varying function?

L : R+ → R+ is called slowly varying in infinity if for all κ > 0

lim
x→∞

L (κ · x)
L (x)

= 1.

[Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming
number for a lightly trimmed strong law depending on the
distribution function.
[Aaronson and Nakada, 2003, Theorem 1.1] gives a generalisation
for sufficiently fast ψ-mixing random variables under the same
conditions on the distribution function as in the i.i.d. case.
If for example F (x) = 1− exp

(
− log3/2(x)

)
, then there exists (dn)

such that lim
n→∞

S2
n

dn
= 1 a.s. while deleting only one digit does not

work.
But there are also distribution functions F (x) = 1− L(x)/x such
that there is no strong law of large numbers under light trimming,
one example is given in [Aaronson and Nakada, 2003].
To my knowledge for such functions not more is known neither in
the i.i.d. nor in the dynamical systems setting.
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/xα, α ∈ (0, 1)
The i.i.d. case

1 The finite expectation case

2 The example P (X1 > x) = L(x)/x

3 The example P (X1 > x) = L(x)/xα, α ∈ (0, 1)
The i.i.d. case
The dynamical systems case
Mean convergence
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/xα, α ∈ (0, 1)
The i.i.d. case

Let us now assume F (x) = 1− L(x)/xα with L slowly varying,
0 < α < 1.

Haeusler and Mason proved laws of the iterated logarithm for
intermediately trimmed sums, see [Haeusler and Mason, 1987] and
[Haeusler, 1993]. From those we can conclude the following theorem.

Theorem 3.1 ([Haeusler and Mason, 1987, Haeusler, 1993, Applications
from])

Let (Xn) be a sequence of i.i.d. non-negative random variables such that
F (x) = 1− L(x)/xα with L slowly varying and α ∈ (0, 1). Further, let
(bn) = o(n) a sequence of natural numbers.
If lim infn→∞ bn/ log log n =∞, then there exists a sequence (dn) such
that

lim
n→∞

Sbn
n

dn
= 1 a.s. (2)

If lim supn→∞ bn/ log log n <∞, then there exists no sequence (dn) such
that (2) holds.

The norming sequence (dn) can be given explicitly.

15 / 23
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/xα, α ∈ (0, 1)
The dynamical systems case

1 The finite expectation case

2 The example P (X1 > x) = L(x)/x

3 The example P (X1 > x) = L(x)/xα, α ∈ (0, 1)
The i.i.d. case
The dynamical systems case
Mean convergence
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/xα, α ∈ (0, 1)
The dynamical systems case

Consider two new systems: Define

χ : [0, 1]→ R>0 T : [0, 1]→ [0, 1] , T̃ : [0, 1]→ [0, 1] ,

x 7→ b1/xc2 x 7→ 1/x mod 1 x 7→2x mod 1.
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For (Xn) = (χ ◦ T n−1) and for (Xn) = (χ ◦ T̃ n−1) we obtain the same
trimmed strong law:
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X1 > x) = L(x)/xα, α ∈ (0, 1)
The dynamical systems case

Theorem 3.2 (Application of [Kesseböhmer and S., 2018, Theorem 1.7])

Let Xn be given as above. Further, let (bn)n∈N be a sequence of natural
numbers tending to infinity with bn = o (n). If

lim
n→∞

bn
log log n

=∞, (3)

then there exists a positive valued sequence (dn)n∈N such that

lim
n→∞

Sn
dn

= 1 a.s. (4)

In this case dn ∼
n2

bn
.

We note that in both cases (Xn) = (χ ◦T n−1) and (Xn) = (χ ◦ T̃ n−1) the
condition on the norming sequence (bn) is the same as in the i.i.d. case.
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Indeed [Kesseböhmer and S., 2018] gives general conditions for
dynamical systems fulfilling a spectral gap property on the transfer
operator and observables with regularly varying tails with exponent
strictly between 0 and 1 for a strong law under intermediate
trimming to hold.

As an application we obtain strong laws under trimming for
piecewise expanding interval maps.
Another application of these results gives strong laws under trimming
for subshifts of finite type, see [Kesseböhmer and S., 2019a].
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Mean convergence

The strong law of large nubmers or Birkhoff’s ergodic theorem give
for i.i.d. or ergodic and identically distributed, integrable random
variables

lim
n→∞

Sn
E (Sn)

= 1 a.s.

In the generalized case for non-integrable random variables we
obtain a strong law after trimming, i.e. there exists a (possibly
constant) sequence of natural numbers (bn) and a norming sequence
(dn) fulfilling

lim
n→∞

Sbn
n

dn
= 1 a.s. (5)

Can we say anything about the norming sequence (dn)?
In general: No!
Even for i.i.d. random variables there are examples for which (5)
holds but E

(
Sbn
n

)
=∞, see [Kesseböhmer and S., 2019c, Remark 3].
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However, remember the two systems from before:

χ : [0, 1]→ R>0 T : [0, 1]→ [0, 1] , T̃ : [0, 1]→ [0, 1] ,

x 7→ b1/xc2 x 7→ 1/x mod 1 x 7→ 2x mod 1 .
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For Xn = χ ◦ T n−1 we have that dn ∼ E
(
Sbn
n

)
.

But for Xn = χ ◦ T̃ n−1 we have that E
(
Sbn
n

)
=∞.

For details see [Kesseböhmer and S., 2019b].
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Mean convergence

[Kesseböhmer and S., 2019b] gives general conditions for mean
convergence for the case F (x) = 1− L(x)/xα, L slowly varying,
0 < α < 1.

If (Xn) are either independent or Xn = f ◦ T n−1 with f sufficiently
regular and T a piecewise expanding interval map and (Xn) are
exponentially fast ψ-mixing and additionally we have for (bn) and
(dn) that

lim
n→∞

Sbn
n

dn
= 1 a.s.

then we also have mean convergence.
As seen before the ψ-mixing property is essential.
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