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Strong laws under trimming - a comparison between iid random variables and dynamical systems

@ The finite expectation case
© The example P (X; > x) = L(x)/x

© The example P(X; > x) = L(x)/x%, a € (0,1)
@ The i.i.d. case
@ The dynamical systems case
@ Mean convergence
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| will compare some limit theorems in the independent identically
distributed (i.i.d.) setting with different dynamical systems.
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| will compare some limit theorems in the independent identically
distributed (i.i.d.) setting with different dynamical systems.

Generally, let (X,) be a sequence of identically distributed random
variables with distribution function F (i.e. F(x) =P (X1 < x)) and set
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This holds no longer true if E (X;) = oc.
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The finite expectation case

| will compare some limit theorems in the independent identically
distributed (i.i.d.) setting with different dynamical systems.

Generally, let (X,) be a sequence of identically distributed random
variables with distribution function F (i.e. F(x) =P (X1 < x)) and set

Sn = 22:1 Xk.

Theorem 1.1 (Strong law of large numbers)

Let (X,) be a sequence of i.i.d. random variables with E (X1) < oo. Then

lim Sn =E(Xy) as.

n—oc N

This holds no longer true if E(X71) = oco.

Theorem 1.2 ([Feller, 1946, Chow and Robbins, 1961])

Let (X,) be a sequence of i.i.d. random variables with E (X1) < oco.
Given any sequence of constants (dy),cn With d, > 0 for all n, then

. Sh .. Sn
limsup — = o0 a.s. or liminf — =0 a.s.
n—oo dn n—oc dp
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The finite expectation case

In the ergodic case we have analog statements:

Theorem 1.3 (Ergodic Theorem [Birkhoff, 1931])

Let (Q,B, i, T) be an ergodic, probability measure preserving dynamical
system and let f: Q — R. If (X,) = (fo T"71) and E (X;) < oo, then

lim &:E(Xl) w— a.s.

n—ooc N
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The finite expectation case

In the ergodic case we have analog statements:

Theorem 1.3 (Ergodic Theorem [Birkhoff, 1931])

Let (Q,B, i, T) be an ergodic, probability measure preserving dynamical
system and let f: Q — R. If (X,) = (fo T"71) and E (X;) < oo, then

lim &:E(Xl) w— a.s.

Theorem 1.4 ([Aaronson, 1977])

Let (2, B, u, T) be an ergodic, probability measure preserving dynamical
system and let f: Q — R. Further, let (X,) = (f o T""') and

[E(X1) = co. Given any sequence of constants (dy), .y with d, > 0 for
all n, then

: Sn .. 5n
limsup — = oou — a.s. or liminf — =0 p— a.s.
n—o0o n n—o00 n
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

@ The finite expectation case

© The example P (X; > x) = L(x)/x

© The example P(X; > x) = L(x)/x%, a € (0,1)
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

We might obtain a strong law of large numbers after trimming.
Let m € S, be pointwise defined such that

Xr(1) = -+ = Xn(n) is a rearrangement of Xi,..., X.

In some literature the order statistics is also denoted by

Xn1 2> ... 2 Xon

For the following let (b,) always be a sequence of numbers in Ny not
exceeding n and set

S,t,’" = Z Xﬂ.(,').
i=b,+1
Definition 2.1
The sum S2 is called

o lightly trimmed sum if b, =r € N,

e intermediately (moderately) trimmed sum if lim,_, ., b, = co and
b, = o(n),
@ heavily trimmed sum if b, ~k-n, 0 < kK < 1.

6/23



Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

o Let us first look at the example F(x) =1—1/x.

7/23



Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

o Let us first look at the example F(x) =1—1/x.

@ Then E (X;) = oo and we don’t obtain a strong law of large
numbers.

7/23



Strong laws under trimming - a comparison between iid random variables and dynamical systems

The example P (X3 > x) = L(x)/x

o Let us first look at the example F(x) =1—1/x.

@ Then E (X;) = oo and we don’t obtain a strong law of large
numbers.

o If (X,) are i.i.d. it follows from [Kesten and Maller, 1992,
Application of Theorem 2.3] that
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n—oo nlogn
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The example P (X3 > x) = L(x)/x

o Let us first look at the example F(x) =1—1/x.

@ Then E (X;) = oo and we don’t obtain a strong law of large
numbers.

o If (X,) are i.i.d. it follows from [Kesten and Maller, 1992,
Application of Theorem 2.3] that

1

lim =1a.s.
n—oo nlogn

o If (X,) are sufficiently fast ¢-mixing it follows from
[Aaronson and Nakada, 2003, Application of Theorem 1.1] that

1

lim =1las.
n—oo nlogn
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The example P (X3 > x) = L(x)/x

But which dynamical systems are 1-mixing?
We give the probably first example of a dynamical system proving strong
laws of large numbers under trimming.

Consider the unique continued fraction expansion of an irrational
1

x € [0,1] given by x :=[a1 (x), a2 (x),...] := .
a1 (x) +

az(X)-i--'
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1
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The example P (X3 > x) = L(x)/x

But which dynamical systems are 1-mixing?

We give the probably first example of a dynamical system proving strong
laws of large numbers under trimming.

Consider the unique continued fraction expansion of an irrational

1
x € [0,1] given by x :=[a1 (x), a2 (x),...] := ]
ay (x) +
ax(x)+
We consider ay, a, ... as random variables. Define
¢: [0,1] = Rso T:1[0,1] —[0,1],
x— |1/x] x—1/x mod 1.
o(x) M7
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! B 06
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

Lemma 2.2 ([Diamond and Vaaler, 1986])
If X, := a,, n € N, then we have that

, Sy 1
lim ——— = —— as.
n—oo nlogn  log?2

(with respect to Lebesgue or vy, the invariant measure with respect to the
Gauss system.)
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v

The continued fraction digits are a special example of exponentially fast
1-mixing random variables and the results by Aaronson and Nakada

could be applied.
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The example P (X3 > x) = L(x)/x

Lemma 2.2 ([Diamond and Vaaler, 1986])
If X, := a,, n € N, then we have that
: Sy 1
lim =_—— a.s.
n—oo nlogn  log?2

(with respect to Lebesgue or vy, the invariant measure with respect to the
Gauss system.)

v

The continued fraction digits are a special example of exponentially fast
1-mixing random variables and the results by Aaronson and Nakada

could be applied.
However, 1)-mixing is a strong condition on dynamical systems and not
all interesting dynamical systems are -mixing...
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

. and light trimming is not always enough, either! Define

¢: [O, 1] — R>o,

T:[0,1] —[0,1]

x+— |1/x] x+—2x mod 1.
67 17
o(x) T(x)
- 0.8
¢ - 0.6
0.4
> -
0.2
X X
02 04 06 08 1 02 04 06 08 1
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

. and light trimming is not always enough, either! Define

¢: [0,1] = Rso, T:[0,1] —[0,1]
x+— |1/x] x+—2x mod 1.
®1o00 Y50
- 0.8
d 0
0.6
2 77 0.4
0.2
02 04 06 0.8 Xl 0.2 0.4 0.6 0.8 Xl

Theorem 2.3 ([Haynes, 2014, Theorem 4, generalized])

If X, = ¢ o T"~1, then for all positive valued sequences (dn)pen and
k € N we have (with respect to the Lebesgue measure \) that either

k k

limsup =~ = oo a.s. or liminf =

— =0 a.s.
n—oo  dn n—oco d,
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

Comparison: Continued fractions (left) / doubling map (right)

67 6+
6(x) o(x)
4 — 4 —
2 — 2
X X
0.2 04 0.6 0.8 1 0.2 0.4 0.6 0.8 1
1 1y
T(x T(x)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
X
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
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The example P (X3 > x) = L(x)/x

Comparison: Continued fractions (left) / doubling map (right)

67 6+
6(x) o(x)
4 — 4 —
2 2 .
X X
0.2 04 0.6 0.8 1 0.2 0.4 0.6 0.8 1
1 1y
T(x T(x)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
X
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Main difference: The observable ¢ obeys the structure of the underlying
dynamics T but not of T.
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2 R 2 .
X X
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1 1y
T(x T(x)
0.8 0.8
0.6 0.6
0.4 0.4
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X
02 0.4 0.6 0.8 1

Main difference: The observable ¢ obeys the structure of the underlying

dynamics T but not of T. ~
If o T" > 1 then po T = [%J
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

Comparison: Continued fractions (left) / doubling map (right)

67 6+
6(x) o(x)
4 — 4 —
2 R 2 .
X X
0.2 04 0.6 0.8 1 0.2 0.4 0.6 0.8 1
1 1y
T(x T(x)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0.2 04 0.6 08

X
02 0.4 0.6 0.8 1

Main difference: The observable ¢ obeys the structure of the underlying

dynamics T but not of T. ~
If 6o 77> 1then go Tt = |72,
So let’s try intermediate trimming!
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The example P (X3 > x) = L(x)/x

(oo}

We define ¥ := ¢ v : N — Ryg: E —(1)<oo
u(n
n=1
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

We define ¥ .= {u:N—)R>0: E (1)<oo}.
u(n
n=1

Theorem 2.4 ([S., 2018, Theorem 1.1 & 1.2])

Let (X,) = (¢ o T"1) and let limy_,o0 by/ log'/* n = 0. Iff there exists
1 € V such that

b, = {'ng(UOglgjg)Q— log log nJ |

then there exists a norming sequence (d,) such that
bn

lim
n—00

=1as (1)

n

In case that (1) holds we have that d, = n - log n.
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The example P (X3 > x) = L(x)/x

We define ¥ .= {u:N—)R>0: E (1)<oo}.
u(n
n=1

Theorem 2.4 ([S., 2018, Theorem 1.1 & 1.2])

Let (X,) = (¢ o T"1) and let limy_,o0 by/ log'/* n = 0. Iff there exists
1 € V such that

b, = {'ng(UOglgjg)Q— log log nJ |

then there exists a norming sequence (d,) such that
bn

lim > =1as (1)

n— o0 n

In case that (1) holds we have that d, = n - log n.

In particular we have that b, = |u - logloglog n| for all n € N is a
possible trimming sequence if and only if u > 1/log?2.
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X3 > x) = L(x)/x

We define ¥ .= {U:N—>R>0: E (1)<oo}.
u(n
n=1

Theorem 2.4 ([S., 2018, Theorem 1.1 & 1.2])

Let (X,) = (¢ o T"1) and let limy_,o0 by/ log'/* n = 0. Iff there exists
1 € V such that

b log v (|logn|) — loglogn
T log 2 ’
then there exists a norming sequence (d,) such that
bn

lim > =1as (1)

n— o0 n

In case that (1) holds we have that d, = n - log n.

In particular we have that b, = |u - logloglog n| for all n € N is a

possible trimming sequence if and only if u > 1/log?2.

It is work in progress to determine limit laws for more general settings

than the doubling map and the observable ¢. 12/23
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P (X1 > x) = L(x)/x with L a slowly varying function?
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L:R" — R" is called slowly varying in infinity if for all K > 0

jim £(5%)

R
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The example P (X3 > x) = L(x)/x

What if we consider other non-negative random variables such that
P (X1 > x) = L(x)/x with L a slowly varying function?
L:Rt — R" is called slowly varying in infinity if for all K > 0
. L(k-x)
AT T
o [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming
number for a lightly trimmed strong law depending on the
distribution function.
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What if we consider other non-negative random variables such that

P (X1 > x) = L(x)/x with L a slowly varying function?

L:Rt — R" is called slowly varying in infinity if for all K > 0

jim L02) _y
X—00 L(X)

o [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming
number for a lightly trimmed strong law depending on the
distribution function.

@ [Aaronson and Nakada, 2003, Theorem 1.1] gives a generalisation
for sufficiently fast )-mixing random variables under the same
conditions on the distribution function as in the i.i.d. case.
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The example P (X3 > x) = L(x)/x

What if we consider other non-negative random variables such that
P (X1 > x) = L(x)/x with L a slowly varying function?
L:R" — R" is called slowly varying in infinity if for all K > 0

jim £(5%)

X—r00 L(X) =1

o [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming
number for a lightly trimmed strong law depending on the
distribution function.

@ [Aaronson and Nakada, 2003, Theorem 1.1] gives a generalisation
for sufficiently fast )-mixing random variables under the same
conditions on the distribution function as in the i.i.d. case.

o If for example F(x) = 1 — exp (— log®/?(x)), then there exists (d,)

2

.S . . .
such that lim = =1 a.s. while deleting only one digit does not
n—oo n

work.
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o [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming
number for a lightly trimmed strong law depending on the
distribution function.
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for sufficiently fast )-mixing random variables under the same
conditions on the distribution function as in the i.i.d. case.

o If for example F(x) = 1 — exp (— log®/?(x)), then there exists (d,)

2
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such that lim = =1 a.s. while deleting only one digit does not
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@ But there are also distribution functions F(x) =1 — L(x)/x such
that there is no strong law of large numbers under light trimming,
one example is given in [Aaronson and Nakada, 2003].
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The example P (X3 > x) = L(x)/x

What if we consider other non-negative random variables such that
P (X1 > x) = L(x)/x with L a slowly varying function?
L:R" — R" is called slowly varying in infinity if for all K > 0

jim £(5%)

R

o [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming
number for a lightly trimmed strong law depending on the
distribution function.

@ [Aaronson and Nakada, 2003, Theorem 1.1] gives a generalisation
for sufficiently fast )-mixing random variables under the same
conditions on the distribution function as in the i.i.d. case.

o If for example F(x) = 1 — exp (— log®/?(x)), then there exists (d,)

2

such that lim = =1 a.s. while deleting only one digit does not
n—oo n

work.

@ But there are also distribution functions F(x) =1 — L(x)/x such
that there is no strong law of large numbers under light trimming,
one example is given in [Aaronson and Nakada, 2003].

@ To my knowledge for such functions not more is known neither in

+theiid nor in the dvnamical eveteme cettino 13/23



Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X; > x) = L(x)/x¥, o« € (0,1)

The i.i.d. case

@ The finite expectation case

© The example P (X; > x) = L(x)/x

© The example P(X; > x) = L(x)/x%, a € (0,1)
@ The i.i.d. case
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The example P (X; > x) = L(x)/x¥, o« € (0,1)

Th d. case

@ Let us now assume F(x) =1 — L(x)/x* with L slowly varying,
O<a<l
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The example P (X; > x) = L(x)/x¥, o« € (0,1)
The i.i.d. case

@ Let us now assume F(x) =1 — L(x)/x* with L slowly varying,
O<ax<l

@ Haeusler and Mason proved laws of the iterated logarithm for
intermediately trimmed sums, see [Haeusler and Mason, 1987] and
[Haeusler, 1993].
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Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X; > x) = L(x)/x¥, o« € (0,1)

The i.i.d. case

@ Let us now assume F(x) =1 — L(x)/x* with L slowly varying,
O<a<l

@ Haeusler and Mason proved laws of the iterated logarithm for
intermediately trimmed sums, see [Haeusler and Mason, 1987] and
[Haeusler, 1993]. From those we can conclude the following theorem.

Theorem 3.1 ([Haeusler and Mason, 1987, Haeusler, 1993, Applications

from])

Let (X,) be a sequence of i.i.d. non-negative random variables such that
F(x) =1— L(x)/x* with L slowly varying and o € (0,1). Further, let
(bn) = o(n) a sequence of natural numbers.
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The example P (X; > x) = L(x)/x¥, o« € (0,1)
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@ Let us now assume F(x) =1 — L(x)/x* with L slowly varying,
O<a<l

@ Haeusler and Mason proved laws of the iterated logarithm for
intermediately trimmed sums, see [Haeusler and Mason, 1987] and
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The norming sequence (d,) can be given explicitly.
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@ The finite expectation case

© The example P (X; > x) = L(x)/x

© The example P(X; > x) = L(x)/x%, a € (0,1)

@ The dynamical systems case
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The dynamical systems case

Consider two new systems: Define

x: [0,1] = Rso T:[0,1] —[0,1], T:[0,1]—[0,1],

2
x+—[1/x] x+1/x mod1 x +—2x mod 1.
Bx(x)” BIx()”
20 20
15 - 15 -
10 o 10
5 5
e —_—
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
1 1y
T(x T(x)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
X
0.2 0.4 0.6 0.8 1 0.2 04 0.6 0.8 1
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The dynamical systems case

Consider two new systems: Define

X: [07 1] _>R>0 T: [07 1] - [071]7 T: [Ov 1] - [07 1]7
x = [1/x)? x—1/x mod1 X —=2x mod 1.

BIx(x)~ BIx(x)"
20 20
15 - 15 -
10 _ 10
5 5 N

02 04 06 08 1 02 04 06 08 1

T(x ! T(x)

0.8 0.8
0.6 0.6
0.4 0.4
02 02

02 04 06 08 1 02 04 06 08 Xl

For (X,) = (x o T""1) and for (X,) = (x © T""!) we obtain the same
trimmed strong law:
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The dynamical systems case

Theorem 3.2 (Application of [Kessebohmer and S., 2018, Theorem 1.7])

Let X, be given as above. Further, let (b,),.y be a sequence of natural
numbers tending to infinity with b, = o (n). If

b
lim ——— = o0, (3)
n—oo loglogn

then there exists a positive valued sequence (dy,),cy such that
Sn
lim — =1 a.s. 4
n—oo d, ( )
2

In this case d,, ~ —.
b,
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Theorem 3.2 (Application of [Kessebohmer and S., 2018, Theorem 1.7])

Let X, be given as above. Further, let (b,),.y be a sequence of natural
numbers tending to infinity with b, = o (n). If

b
lim ——— = o0, (3)
n—oo loglogn

then there exists a positive valued sequence (dy,),cy such that

s,
n||_>moo a 1las. (4)

2

. n
In this case d,, ~ —.
b,

We note that in both cases (X,) = (yo 7" 1) and (X,) = (xo T"!) the
condition on the norming sequence (b,) is the same as in the i.i.d. case.

18 /23



Strong laws under trimming - a comparison between iid random variables and dynamical systems

The example P (X; > x) = L(x)/x¥, o« € (0,1)
The dynamical systems case

@ Indeed [Kessebdhmer and S., 2018] gives general conditions for
dynamical systems fulfilling a spectral gap property on the transfer
operator and observables with regularly varying tails with exponent
strictly between 0 and 1 for a strong law under intermediate
trimming to hold.
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The example P (X; > x) = L(x)/x¥, o« € (0,1)

The dynamical systems case

@ Indeed [Kessebdhmer and S., 2018] gives general conditions for
dynamical systems fulfilling a spectral gap property on the transfer
operator and observables with regularly varying tails with exponent
strictly between 0 and 1 for a strong law under intermediate
trimming to hold.

@ As an application we obtain strong laws under trimming for
piecewise expanding interval maps.

@ Another application of these results gives strong laws under trimming
for subshifts of finite type, see [Kessebdhmer and S., 2019a].
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Mean convergence

@ The finite expectation case

© The example P (X; > x) = L(x)/x

© The example P(X; > x) = L(x)/x%, a € (0,1)

@ Mean convergence
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Mean convergence

@ The strong law of large nubmers or Birkhoff's ergodic theorem give
for i.i.d. or ergodic and identically distributed, integrable random
variables

lim i—las
n%ooE(Sn)i o
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@ The strong law of large nubmers or Birkhoff's ergodic theorem give
for i.i.d. or ergodic and identically distributed, integrable random
variables

lim i—las
n%ooE(Sn)i o

@ In the generalized case for non-integrable random variables we
obtain a strong law after trimming, i.e. there exists a (possibly
constant) sequence of natural numbers (b,) and a norming sequence
(dp) fulfilling

by
lim S las. (5)

21/23



Strong laws under trimming - a comparison between iid random variables and dynamical systems
The example P (X; > x) = L(x)/x¥, o« € (0,1)

Mean convergence

@ The strong law of large nubmers or Birkhoff's ergodic theorem give
for i.i.d. or ergodic and identically distributed, integrable random
variables

. S,
lim

Jim_ E(Sn) =1a.s.

@ In the generalized case for non-integrable random variables we
obtain a strong law after trimming, i.e. there exists a (possibly
constant) sequence of natural numbers (b,) and a norming sequence
(dp) fulfilling

by
lim S las. (5)

n—oo n

o Can we say anything about the norming sequence (d,)?
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The example P (X; > x) = L(x)/x¥, o« € (0,1)

Mean convergence

@ The strong law of large nubmers or Birkhoff's ergodic theorem give
for i.i.d. or ergodic and identically distributed, integrable random
variables

@ In the generalized case for non-integrable random variables we
obtain a strong law after trimming, i.e. there exists a (possibly
constant) sequence of natural numbers (b,) and a norming sequence
(dp) fulfilling

bn
lim
n—o0

=1as. (5)

n

o Can we say anything about the norming sequence (d,)?

@ In general: Nol
Even for i.i.d. random variables there are examples for which (5)
holds but E (S27) = oo, see [Kessebshmer and S., 2019¢, Remark 3].
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Mean convergence

However, remember the two systems from before:

x: [0,1] = Rso  T:[0,1] —[0,1], T:1[0,1] —[0,1],

2
x— [1/x] x+—1/x mod1 x—2x mod 1
300 (300"
20 20
15 - 15 -
10 o 10
5 5
e —_—
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
13 17
T(x T(x)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
X
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
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Mean convergence

However, remember the two systems from before:

X: [0,1] 5 Rso  T:[0,1] = [0,1], T: 10,1 —1[0,1],
x = [1/x]? x+—1/x mod1 x—2x mod 1

300 (300"
20 20
15 - 15 -
10 o 10
5 5 -

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

T(x ' T(x)

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 Xl

For X, = x o T"~* we have that d, ~ E (5}").
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Mean convergence

However, remember the two systems from before:

[0,1] > Rso  T:[0,1] = [0,1], T: 10,1 —1[0,1],
x = [1/x]? x+—1/x mod1 x—2x mod 1

300 (300"
20 20
15 - 15 -
10 _ 10 —
5 5 -

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
T ' T(x)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 Xl

For X, = x o T"~* we have that d, ~ E (S} )
But for X, = y o T"~! we have that E (S2) =
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Mean convergence

However, remember the two systems from before:

x: [0,1]=Rso  T:[0,1]—=10,1], T: 00,1 —[0,1],
x = [1/x]? x+—1/x mod1 x—2x mod 1

Bx(x)™ BIx()”
20 20

10 10 o

5 - 5 -

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

T 700

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.2 0.4 0.6 0.8 0.4 0.6 0.8 1

1 0.2
For X, = x o T"~* we have that d, ~ E (5}").
But for X, = x o T"~! we have that E (5/) = cc.
For details see [Kessebohmer and S., 2019b].
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o [Kessebohmer and S., 2019b] gives general conditions for mean
convergence for the case F(x) =1 — L(x)/x%, L slowly varying,
O<a<l

23/23



Strong laws under trimming - a comparison between iid random variables and dynamical systems

The example P (X; > x) = L(x)/x¥, o« € (0,1)
Mean convergence

o [Kessebohmer and S., 2019b] gives general conditions for mean
convergence for the case F(x) =1 — L(x)/x%, L slowly varying,
O<a<l

e If (X,) are either independent or X, = f o T"~1 with f sufficiently
regular and T a piecewise expanding interval map and (X,) are
exponentially fast ¢-mixing and additionally we have for (b,) and

(dp) that

bn
lim =1as.
n—oo

n

then we also have mean convergence.
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The example P (X; > x) = L(x)/x¥, o« € (0,1)
Mean convergence

o [Kessebohmer and S., 2019b] gives general conditions for mean
convergence for the case F(x) =1 — L(x)/x%, L slowly varying,
O<a<l

e If (X,) are either independent or X, = f o T"~1 with f sufficiently
regular and T a piecewise expanding interval map and (X,) are
exponentially fast ¢-mixing and additionally we have for (b,) and

(dp) that

bn
lim =1as.
n—oo

n

then we also have mean convergence.

@ As seen before the y-mixing property is essential.
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