Strong laws under trimming - a comparison between iid random variables and dynamical systems

Tanja Schindler

The Australian National University soon Scuola Normale Superiore di Pisa

7th Bremen summer school and symposium dynamical systems - pure and applied, August 2019

2 The example
$$\mathbb{P}(X_1 > x) = L(x)/x$$

3 The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0,1)$

• The i.i.d. case

(

- The dynamical systems case
- Mean convergence

I will compare some limit theorems in the independent identically distributed (i.i.d.) setting with different dynamical systems.

Strong laws under trimming - a comparison between iid random variables and dynamical systems The finite expectation case

I will compare some limit theorems in the independent identically distributed (i.i.d.) setting with different dynamical systems. Generally, let (X_n) be a sequence of identically distributed random variables with distribution function F (i.e. $F(x) = \mathbb{P}(X_1 \le x)$) and set $S_n := \sum_{k=1}^n X_k$.

Strong laws under trimming - a comparison between iid random variables and dynamical systems The finite expectation case

I will compare some limit theorems in the independent identically distributed (i.i.d.) setting with different dynamical systems. Generally, let (X_n) be a sequence of identically distributed random variables with distribution function F (i.e. $F(x) = \mathbb{P}(X_1 \le x)$) and set $S_n := \sum_{k=1}^n X_k$.

Theorem 1.1 (Strong law of large numbers)

Let (X_n) be a sequence of *i.i.d.* random variables with $\mathbb{E}(X_1) < \infty$. Then

 $\lim_{n\to\infty}\frac{S_n}{n}=\mathbb{E}\left(X_1\right) \ a.s.$

Strong laws under trimming - a comparison between iid random variables and dynamical systems The finite expectation case

I will compare some limit theorems in the independent identically distributed (i.i.d.) setting with different dynamical systems. Generally, let (X_n) be a sequence of identically distributed random variables with distribution function F (i.e. $F(x) = \mathbb{P}(X_1 \le x)$) and set $S_n := \sum_{k=1}^n X_k$.

Theorem 1.1 (Strong law of large numbers)

Let (X_n) be a sequence of *i.i.d.* random variables with $\mathbb{E}(X_1) < \infty$. Then

$$\lim_{n\to\infty}\frac{S_n}{n}=\mathbb{E}\left(X_1\right) \ a.s.$$

This holds no longer true if $\mathbb{E}(X_1) = \infty$.

I will compare some limit theorems in the independent identically distributed (i.i.d.) setting with different dynamical systems. Generally, let (X_n) be a sequence of identically distributed random variables with distribution function F (i.e. $F(x) = \mathbb{P}(X_1 \le x)$) and set $S_n := \sum_{k=1}^n X_k$.

Theorem 1.1 (Strong law of large numbers)

Let (X_n) be a sequence of i.i.d. random variables with $\mathbb{E}(X_1) < \infty$. Then

$$\lim_{n\to\infty}\frac{S_n}{n}=\mathbb{E}\left(X_1\right) \ a.s.$$

This holds no longer true if $\mathbb{E}(X_1) = \infty$.

Theorem 1.2 ([Feller, 1946, Chow and Robbins, 1961])

Let (X_n) be a sequence of i.i.d. random variables with $\mathbb{E}(X_1) < \infty$. Given any sequence of constants $(d_n)_{n \in \mathbb{N}}$ with $d_n > 0$ for all n, then

$$\limsup_{n\to\infty}\frac{S_n}{d_n}=\infty \ a.s. \ or \ \liminf_{n\to\infty}\frac{S_n}{d_n}=0 \ a.s.$$

In the ergodic case we have analog statements:

Theorem 1.3 (Ergodic Theorem [Birkhoff, 1931])

Let $(\Omega, \mathcal{B}, \mu, T)$ be an ergodic, probability measure preserving dynamical system and let $f: \Omega \to \mathbb{R}$. If $(X_n) = (f \circ T^{n-1})$ and $\mathbb{E}(X_1) < \infty$, then

$$\lim_{n\to\infty}\frac{S_n}{n}=\mathbb{E}\left(X_1\right)\quad\mu-\text{ a.s.}$$

In the ergodic case we have analog statements:

Theorem 1.3 (Ergodic Theorem [Birkhoff, 1931])

Let $(\Omega, \mathcal{B}, \mu, T)$ be an ergodic, probability measure preserving dynamical system and let $f: \Omega \to \mathbb{R}$. If $(X_n) = (f \circ T^{n-1})$ and $\mathbb{E}(X_1) < \infty$, then

$$\lim_{n\to\infty}\frac{S_n}{n}=\mathbb{E}\left(X_1\right)\quad\mu-\text{ a.s.}$$

Theorem 1.4 ([Aaronson, 1977])

Let $(\Omega, \mathcal{B}, \mu, T)$ be an ergodic, probability measure preserving dynamical system and let $f : \Omega \to \mathbb{R}$. Further, let $(X_n) = (f \circ T^{n-1})$ and $\mathbb{E}(X_1) = \infty$. Given any sequence of constants $(d_n)_{n \in \mathbb{N}}$ with $d_n > 0$ for all n, then

$$\limsup_{n\to\infty}\frac{S_n}{d_n}=\infty\mu-\text{ a.s. or }\liminf_{n\to\infty}\frac{S_n}{d_n}=0\quad\mu-\text{ a.s.}$$

The finite expectation case

2 The example $\mathbb{P}(X_1 > x) = L(x)/x$

3 The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0, 1)$

- The i.i.d. case
- The dynamical systems case
- Mean convergence

We might obtain a strong law of large numbers after trimming.

We might obtain a strong law of large numbers after trimming. Let $\pi \in S_n$ be pointwise defined such that

 $X_{\pi(1)} \geq \ldots \geq X_{\pi(n)}$ is a rearrangement of X_1, \ldots, X_n .

We might obtain a strong law of large numbers after trimming. Let $\pi \in S_n$ be pointwise defined such that

 $X_{\pi(1)} \geq \ldots \geq X_{\pi(n)}$ is a rearrangement of X_1, \ldots, X_n .

In some literature the order statistics is also denoted by $X_{n,1} \ge \ldots \ge X_{n,n}$.

We might obtain a strong law of large numbers after trimming. Let $\pi \in S_n$ be pointwise defined such that

$$X_{\pi(1)} \geq \ldots \geq X_{\pi(n)}$$
 is a rearrangement of X_1, \ldots, X_n .

In some literature the order statistics is also denoted by

 $X_{n,1} \ge \ldots \ge X_{n,n}$. For the following let (b_n) always be a sequence of numbers in \mathbb{N}_0 not exceeding n and set

$$S_n^{b_n} := \sum_{i=b_n+1}^n X_{\pi(i)}.$$

We might obtain a strong law of large numbers after trimming. Let $\pi \in S_n$ be pointwise defined such that

$$X_{\pi(1)} \geq \ldots \geq X_{\pi(n)}$$
 is a rearrangement of X_1, \ldots, X_n .

In some literature the order statistics is also denoted by

 $X_{n,1} \ge \ldots \ge X_{n,n}$. For the following let (b_n) always be a sequence of numbers in \mathbb{N}_0 not exceeding n and set

$$S_n^{b_n}:=\sum_{i=b_n+1}^n X_{\pi(i)}.$$

Definition 2.1

The sum $S_n^{b_n}$ is called

- lightly trimmed sum if $b_n = r \in \mathbb{N}$,
- intermediately (moderately) trimmed sum if $\lim_{n\to\infty} b_n = \infty$ and $b_n = o(n)$,
- heavily trimmed sum if $b_n \sim \kappa \cdot n$, $0 < \kappa < 1$.

• Let us first look at the example F(x) = 1 - 1/x.

- Let us first look at the example F(x) = 1 1/x.
- Then 𝔼 (X₁) = ∞ and we don't obtain a strong law of large numbers.

- Let us first look at the example F(x) = 1 1/x.
- Then 𝔅 (X₁) = ∞ and we don't obtain a strong law of large numbers.
- If (X_n) are i.i.d. it follows from [Kesten and Maller, 1992, Application of Theorem 2.3] that

$$\lim_{n \to \infty} \frac{S_n^1}{n \log n} = 1 \text{ a.s.}$$

- Let us first look at the example F(x) = 1 1/x.
- Then 𝔅 (X₁) = ∞ and we don't obtain a strong law of large numbers.
- If (X_n) are i.i.d. it follows from [Kesten and Maller, 1992, Application of Theorem 2.3] that

$$\lim_{n\to\infty}\frac{S_n^1}{n\log n}=1 \text{ a.s.}$$

 If (X_n) are sufficiently fast ψ-mixing it follows from [Aaronson and Nakada, 2003, Application of Theorem 1.1] that

$$\lim_{n\to\infty}\frac{S_n^1}{n\log n}=1 \text{ a.s.}$$

But which dynamical systems are ψ -mixing?

But which dynamical systems are ψ -mixing?

We give the probably first example of a dynamical system proving strong laws of large numbers under trimming.

But which dynamical systems are ψ -mixing?

We give the probably first example of a dynamical system proving strong laws of large numbers under trimming.

Consider the unique continued fraction expansion of an irrational

$$x \in [0,1]$$
 given by $x := [a_1(x), a_2(x), \ldots] := rac{1}{a_1(x) + rac{1}{a_2(x) + \ddots}}$

But which dynamical systems are ψ -mixing?

We give the probably first example of a dynamical system proving strong laws of large numbers under trimming.

Consider the unique continued fraction expansion of an irrational

$$x \in [0,1]$$
 given by $x := [a_1(x), a_2(x), \ldots] := \frac{1}{a_1(x) + \frac{1}{a_2(x) + \cdots}}$

We consider a_1, a_2, \ldots as random variables.

But which dynamical systems are ψ -mixing? We give the probably first example of a dynamical system proving strong laws of large numbers under trimming.

Consider the unique continued fraction expansion of an irrational

$$x \in [0,1]$$
 given by $x := [a_1(x), a_2(x), \ldots] := \frac{1}{a_1(x) + \frac{1}{a_2(x) + \cdots}}$

We consider a_1, a_2, \ldots as random variables. Define

$$\phi \colon \llbracket 0,1
brace op \mathbb{R}_{>0} \qquad \qquad \mathcal{T} \colon \llbracket 0,1
brace op \llbracket 0,1
brace, , \ x\mapsto \lfloor 1/x
floor \qquad \qquad x \mapsto 1/x \mod 1.$$

But which dynamical systems are ψ -mixing? We give the probably first example of a dynamical system proving strong laws of large numbers under trimming.

Consider the unique continued fraction expansion of an irrational

$$x \in [0,1]$$
 given by $x := [a_1(x), a_2(x), \ldots] := \frac{1}{a_1(x) + \frac{1}{a_2(x) + \cdots}}$

We consider a_1, a_2, \ldots as random variables. Define

$$\phi \colon \llbracket 0,1
brace operator \mathbb{R}_{>0} \qquad \qquad \mathcal{T} \colon \llbracket 0,1
brace operator 0,1
brace, \ x\mapsto \lfloor 1/x
floor \qquad \qquad ext{mod } 1.$$

Lemma 2.2 ([Diamond and Vaaler, 1986])

n

If $X_n := a_n$, $n \in \mathbb{N}$, then we have that

$$\lim_{n \to \infty} \frac{S_n^1}{n \log n} = \frac{1}{\log 2} \ a.s.$$

(with respect to Lebesgue or γ , the invariant measure with respect to the Gauss system.)

Lemma 2.2 ([Diamond and Vaaler, 1986])

n

If $X_n := a_n$, $n \in \mathbb{N}$, then we have that

$$\lim_{n \to \infty} \frac{S_n^1}{n \log n} = \frac{1}{\log 2} \ a.s.$$

(with respect to Lebesgue or γ , the invariant measure with respect to the Gauss system.)

The continued fraction digits are a special example of exponentially fast ψ -mixing random variables and the results by Aaronson and Nakada could be applied.

Lemma 2.2 ([Diamond and Vaaler, 1986])

n

If $X_n := a_n$, $n \in \mathbb{N}$, then we have that

$$\lim_{n \to \infty} \frac{S_n^1}{n \log n} = \frac{1}{\log 2} \ a.s.$$

(with respect to Lebesgue or γ , the invariant measure with respect to the Gauss system.)

The continued fraction digits are a special example of exponentially fast ψ -mixing random variables and the results by Aaronson and Nakada could be applied.

However, $\psi\text{-mixing}$ is a strong condition on dynamical systems and not all interesting dynamical systems are $\psi\text{-mixing}...$

... and light trimming is not always enough, either!

... and light trimming is not always enough, either! Define

$$\begin{split} \phi \colon & [0,1] \to \mathbb{R}_{>0}, & \widetilde{T} \colon & [0,1] \to [0,1] \\ & x \mapsto \lfloor 1/x \rfloor & x \mapsto 2x \mod 1. \end{split}$$

... and light trimming is not always enough, either! Define

$$\begin{split} \phi \colon & [0,1] \to \mathbb{R}_{>0}, & \widetilde{T} \colon & [0,1] \to [0,1] \\ & x \mapsto \lfloor 1/x \rfloor & x \mapsto 2x \mod 1. \end{split}$$

Theorem 2.3 ([Haynes, 2014, Theorem 4, generalized])

If $X_n = \phi \circ \widetilde{T}^{n-1}$, then for all positive valued sequences $(d_n)_{n \in \mathbb{N}}$ and $k \in \mathbb{N}$ we have (with respect to the Lebesgue measure λ) that either

$$\limsup_{n\to\infty}\frac{S_n^k}{d_n}=\infty \ a.s. \ or \ \liminf_{n\to\infty}\frac{S_n^k}{d_n}=0 \ a.s.$$

Comparison: Continued fractions (left) / doubling map (right)

Comparison: Continued fractions (left) / doubling map (right)

Main difference: The observable ϕ obeys the structure of the underlying dynamics T but not of \widetilde{T} .

Comparison: Continued fractions (left) / doubling map (right)

Main difference: The observable ϕ obeys the structure of the underlying dynamics T but not of \widetilde{T} . If $\phi \circ \widetilde{T}^n > 1$ then $\phi \circ \widetilde{T}^{n+1} = \left\lfloor \frac{\phi \circ \widetilde{T}^{n+1}}{2} \right\rfloor$.

Comparison: Continued fractions (left) / doubling map (right)

Main difference: The observable ϕ obeys the structure of the underlying dynamics T but not of \widetilde{T} . If $\phi \circ \widetilde{T}^n > 1$ then $\phi \circ \widetilde{T}^{n+1} = \left\lfloor \frac{\phi \circ \widetilde{T}^{n+1}}{2} \right\rfloor$. So let's try intermediate trimming!

We define
$$\Psi := \left\{ u : \mathbb{N} \to \mathbb{R}_{>0} \colon \sum_{n=1}^{\infty} \frac{1}{u(n)} < \infty \right\}.$$
We define
$$\Psi := \left\{ u : \mathbb{N} \to \mathbb{R}_{>0} \colon \sum_{n=1}^{\infty} \frac{1}{u(n)} < \infty \right\}.$$

Theorem 2.4 ([S., 2018, Theorem 1.1 & 1.2])

Let $(X_n) = (\phi \circ \widetilde{T}^{n-1})$ and let $\lim_{n\to\infty} b_n / \log^{1/4} n = 0$. Iff there exists $\psi \in \Psi$ such that

$$p_n := \left\lfloor \frac{\log \psi\left(\lfloor \log n \rfloor \right) - \log \log n}{\log 2} \right\rfloor$$

then there exists a norming sequence (d_n) such that

$$\lim_{n \to \infty} \frac{S_n^{b_n}}{d_n} = 1 \text{ a.s.}$$
(1)

In case that (1) holds we have that $d_n = n \cdot \log n$.

We define
$$\Psi := \left\{ u : \mathbb{N} \to \mathbb{R}_{>0} \colon \sum_{n=1}^{\infty} \frac{1}{u(n)} < \infty \right\}.$$

Theorem 2.4 ([S., 2018, Theorem 1.1 & 1.2])

Let $(X_n) = (\phi \circ \widetilde{T}^{n-1})$ and let $\lim_{n\to\infty} b_n / \log^{1/4} n = 0$. Iff there exists $\psi \in \Psi$ such that

$$p_n := \left\lfloor \frac{\log \psi\left(\lfloor \log n \rfloor\right) - \log \log n}{\log 2} \right\rfloor$$

then there exists a norming sequence (d_n) such that

$$\lim_{n \to \infty} \frac{S_n^{b_n}}{d_n} = 1 \text{ a.s.}$$
(1)

In case that (1) holds we have that $d_n = n \cdot \log n$.

In particular we have that $b_n = \lfloor u \cdot \log \log \log n \rfloor$ for all $n \in \mathbb{N}$ is a possible trimming sequence if and only if $u > 1/\log 2$.

We define
$$\Psi \coloneqq \left\{ u : \mathbb{N} \to \mathbb{R}_{>0} \colon \sum_{n=1}^{\infty} \frac{1}{u(n)} < \infty \right\}.$$

Theorem 2.4 ([S., 2018, Theorem 1.1 & 1.2])

Let $(X_n) = (\phi \circ \widetilde{T}^{n-1})$ and let $\lim_{n\to\infty} b_n / \log^{1/4} n = 0$. Iff there exists $\psi \in \Psi$ such that

$$p_n := \left\lfloor \frac{\log \psi\left(\lfloor \log n \rfloor\right) - \log \log n}{\log 2} \right\rfloor$$

then there exists a norming sequence (d_n) such that

$$\lim_{n \to \infty} \frac{S_n^{b_n}}{d_n} = 1 \text{ a.s.}$$
(1)

12/23

In case that (1) holds we have that $d_n = n \cdot \log n$.

In particular we have that $b_n = \lfloor u \cdot \log \log \log n \rfloor$ for all $n \in \mathbb{N}$ is a possible trimming sequence if and only if $u > 1/\log 2$. It is work in progress to determine limit laws for more general settings than the doubling map and the observable ϕ .

What if we consider other non-negative random variables such that $\mathbb{P}(X_1 > x) = L(x)/x$ with L a slowly varying function?

$$\lim_{x\to\infty}\frac{L(\kappa\cdot x)}{L(x)}=1.$$

What if we consider other non-negative random variables such that $\mathbb{P}(X_1 > x) = L(x)/x$ with L a slowly varying function? $L : \mathbb{R}^+ \to \mathbb{R}^+$ is called *slowly varying* in infinity if for all $\kappa > 0$

$$\lim_{x\to\infty}\frac{L(\kappa\cdot x)}{L(x)}=1.$$

• [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming number for a lightly trimmed strong law depending on the distribution function.

$$\lim_{x\to\infty}\frac{L(\kappa\cdot x)}{L(x)}=1.$$

- [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming number for a lightly trimmed strong law depending on the distribution function.
- [Aaronson and Nakada, 2003, Theorem 1.1] gives a generalisation for sufficiently fast ψ -mixing random variables under the same conditions on the distribution function as in the i.i.d. case.

$$\lim_{x\to\infty}\frac{L(\kappa\cdot x)}{L(x)}=1.$$

- [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming number for a lightly trimmed strong law depending on the distribution function.
- [Aaronson and Nakada, 2003, Theorem 1.1] gives a generalisation for sufficiently fast ψ -mixing random variables under the same conditions on the distribution function as in the i.i.d. case.
- If for example $F(x) = 1 \exp(-\log^{3/2}(x))$, then there exists (d_n) such that $\lim_{n \to \infty} \frac{S_n^2}{d_n} = 1$ a.s. while deleting only one digit does not work.

$$\lim_{x\to\infty}\frac{L(\kappa\cdot x)}{L(x)}=1.$$

- [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming number for a lightly trimmed strong law depending on the distribution function.
- [Aaronson and Nakada, 2003, Theorem 1.1] gives a generalisation for sufficiently fast ψ -mixing random variables under the same conditions on the distribution function as in the i.i.d. case.
- If for example $F(x) = 1 \exp(-\log^{3/2}(x))$, then there exists (d_n) such that $\lim_{n \to \infty} \frac{S_n^2}{d_n} = 1$ a.s. while deleting only one digit does not work.
- But there are also distribution functions F(x) = 1 L(x)/x such that there is no strong law of large numbers under light trimming, one example is given in [Aaronson and Nakada, 2003].

What if we consider other non-negative random variables such that $\mathbb{P}(X_1 > x) = L(x)/x$ with L a slowly varying function? $L : \mathbb{R}^+ \to \mathbb{R}^+$ is called *slowly varying* in infinity if for all $\kappa > 0$

$$\lim_{x\to\infty}\frac{L(\kappa\cdot x)}{L(x)}=1.$$

- [Kesten and Maller, 1992, Theorem 2.3] gives a minimal trimming number for a lightly trimmed strong law depending on the distribution function.
- [Aaronson and Nakada, 2003, Theorem 1.1] gives a generalisation for sufficiently fast ψ -mixing random variables under the same conditions on the distribution function as in the i.i.d. case.
- If for example $F(x) = 1 \exp(-\log^{3/2}(x))$, then there exists (d_n) such that $\lim_{n \to \infty} \frac{S_n^2}{d_n} = 1$ a.s. while deleting only one digit does not work.
- But there are also distribution functions F(x) = 1 L(x)/x such that there is no strong law of large numbers under light trimming, one example is given in [Aaronson and Nakada, 2003].
- To my knowledge for such functions not more is known neither in the i.i.d. nor in the dynamical systems setting.

13/23

2 The example
$$\mathbb{P}(X_1 > x) = L(x)/x$$

3 The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0,1)$

• The i.i.d. case

(

- The dynamical systems case
- Mean convergence

• Let us now assume $F(x) = 1 - L(x)/x^{\alpha}$ with L slowly varying, $0 < \alpha < 1$.

- Let us now assume $F(x) = 1 L(x)/x^{\alpha}$ with L slowly varying, $0 < \alpha < 1$.
- Haeusler and Mason proved laws of the iterated logarithm for intermediately trimmed sums, see [Haeusler and Mason, 1987] and [Haeusler, 1993].

- Let us now assume $F(x) = 1 L(x)/x^{\alpha}$ with L slowly varying, $0 < \alpha < 1$.
- Haeusler and Mason proved laws of the iterated logarithm for intermediately trimmed sums, see [Haeusler and Mason, 1987] and [Haeusler, 1993]. From those we can conclude the following theorem.

Theorem 3.1 ([Haeusler and Mason, 1987, Haeusler, 1993, Applications from])

Let (X_n) be a sequence of i.i.d. non-negative random variables such that $F(x) = 1 - L(x)/x^{\alpha}$ with L slowly varying and $\alpha \in (0,1)$. Further, let $(b_n) = o(n)$ a sequence of natural numbers.

- Let us now assume $F(x) = 1 L(x)/x^{\alpha}$ with L slowly varying, $0 < \alpha < 1$.
- Haeusler and Mason proved laws of the iterated logarithm for intermediately trimmed sums, see [Haeusler and Mason, 1987] and [Haeusler, 1993]. From those we can conclude the following theorem.

Theorem 3.1 ([Haeusler and Mason, 1987, Haeusler, 1993, Applications from])

Let (X_n) be a sequence of i.i.d. non-negative random variables such that $F(x) = 1 - L(x)/x^{\alpha}$ with L slowly varying and $\alpha \in (0, 1)$. Further, let $(b_n) = o(n)$ a sequence of natural numbers. If $\liminf_{n\to\infty} b_n/\log\log n = \infty$, then there exists a sequence (d_n) such that

$$\lim_{n \to \infty} \frac{S_n^{b_n}}{d_n} = 1 \text{ a.s.}$$
(2)

- Let us now assume $F(x) = 1 L(x)/x^{\alpha}$ with L slowly varying, $0 < \alpha < 1$.
- Haeusler and Mason proved laws of the iterated logarithm for intermediately trimmed sums, see [Haeusler and Mason, 1987] and [Haeusler, 1993]. From those we can conclude the following theorem.

Theorem 3.1 ([Haeusler and Mason, 1987, Haeusler, 1993, Applications from])

Let (X_n) be a sequence of i.i.d. non-negative random variables such that $F(x) = 1 - L(x)/x^{\alpha}$ with L slowly varying and $\alpha \in (0, 1)$. Further, let $(b_n) = o(n)$ a sequence of natural numbers. If $\liminf_{n\to\infty} b_n/\log\log n = \infty$, then there exists a sequence (d_n) such that

$$\lim_{n \to \infty} \frac{S_n^{b_n}}{d_n} = 1 \text{ a.s.}$$
(2)

If $\limsup_{n\to\infty} b_n / \log \log n < \infty$, then there exists no sequence (d_n) such that (2) holds.

- Let us now assume $F(x) = 1 L(x)/x^{\alpha}$ with L slowly varying, $0 < \alpha < 1$.
- Haeusler and Mason proved laws of the iterated logarithm for intermediately trimmed sums, see [Haeusler and Mason, 1987] and [Haeusler, 1993]. From those we can conclude the following theorem.

Theorem 3.1 ([Haeusler and Mason, 1987, Haeusler, 1993, Applications from])

Let (X_n) be a sequence of i.i.d. non-negative random variables such that $F(x) = 1 - L(x)/x^{\alpha}$ with L slowly varying and $\alpha \in (0, 1)$. Further, let $(b_n) = o(n)$ a sequence of natural numbers. If $\liminf_{n\to\infty} b_n/\log\log n = \infty$, then there exists a sequence (d_n) such that

$$\lim_{n \to \infty} \frac{S_n^{b_n}}{d_n} = 1 \text{ a.s.}$$
(2)

If $\limsup_{n\to\infty} b_n/\log\log n < \infty$, then there exists no sequence (d_n) such that (2) holds.

The norming sequence (d_n) can be given explicitly.

2 The example
$$\mathbb{P}(X_1 > x) = L(x)/x$$

3 The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0, 1)$

• The i.i.d. case

(

- The dynamical systems case
- Mean convergence

The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0, 1)$

The dynamical systems case

Consider two new systems: Define $\chi\colon \left[0,1\right] \to \mathbb{R}_{>0} \qquad \mathcal{T}\colon \left[0,1\right] \to \left[0,1\right], \qquad \qquad \widetilde{\mathcal{T}}\colon \left[0,1\right] \to \left[0,1\right],$ $x\mapsto \lfloor 1/x
floor^2 \qquad \qquad x\mapsto 1/x \mod 1 \qquad \qquad x\mapsto 2x \mod 1.$ $25 \frac{1}{\chi(x)}$ $^{25} \dagger \chi(x)^{-}$ 20 20 15 15 10 10 5 5 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 $1 | \tilde{T}(x)$ T(x)0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 х 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0, 1)$

The dynamical systems case

Consider two new systems: Define $\chi \colon [0,1] \to \mathbb{R}_{>0} \qquad \mathcal{T} \colon [0,1] \to [0,1], \qquad \qquad \widetilde{\mathcal{T}} \colon [0,1] \to [0,1],$ $x \mapsto |1/x|^2$ $x \mapsto 1/x \mod 1$ $x \mapsto 2x \mod 1$. $25 \frac{1}{\chi(x)}$ $25 \dagger \chi(x)^{-}$ 20 20 15 15 10 10 5 5 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 $1 | \tilde{T}(x)$ T(x)0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 х 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1

For $(X_n) = (\chi \circ T^{n-1})$ and for $(X_n) = (\chi \circ \tilde{T}^{n-1})$ we obtain the same trimmed strong law:

Theorem 3.2 (Application of [Kesseböhmer and S., 2018, Theorem 1.7])

Let X_n be given as above. Further, let $(b_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers tending to infinity with $b_n = o(n)$. If

$$\lim_{n \to \infty} \frac{b_n}{\log \log n} = \infty, \tag{3}$$

then there exists a positive valued sequence $(d_n)_{n\in\mathbb{N}}$ such that

$$\lim_{n \to \infty} \frac{S_n}{d_n} = 1 \text{ a.s.}$$
(4)

In this case
$$d_n \sim \frac{n^2}{b_n}$$
.

Theorem 3.2 (Application of [Kesseböhmer and S., 2018, Theorem 1.7])

Let X_n be given as above. Further, let $(b_n)_{n \in \mathbb{N}}$ be a sequence of natural numbers tending to infinity with $b_n = o(n)$. If

$$\lim_{n \to \infty} \frac{b_n}{\log \log n} = \infty,$$
(3)

then there exists a positive valued sequence $(d_n)_{n\in\mathbb{N}}$ such that

$$\lim_{n \to \infty} \frac{S_n}{d_n} = 1 \text{ a.s.}$$

In this case $d_n \sim \frac{n^2}{b_n}$.

We note that in both cases $(X_n) = (\chi \circ T^{n-1})$ and $(X_n) = (\chi \circ \tilde{T}^{n-1})$ the condition on the norming sequence (b_n) is the same as in the i.i.d. case.

• Indeed [Kesseböhmer and S., 2018] gives general conditions for dynamical systems fulfilling a spectral gap property on the transfer operator and observables with regularly varying tails with exponent strictly between 0 and 1 for a strong law under intermediate trimming to hold.

- Indeed [Kesseböhmer and S., 2018] gives general conditions for dynamical systems fulfilling a spectral gap property on the transfer operator and observables with regularly varying tails with exponent strictly between 0 and 1 for a strong law under intermediate trimming to hold.
- As an application we obtain strong laws under trimming for piecewise expanding interval maps.

- Indeed [Kesseböhmer and S., 2018] gives general conditions for dynamical systems fulfilling a spectral gap property on the transfer operator and observables with regularly varying tails with exponent strictly between 0 and 1 for a strong law under intermediate trimming to hold.
- As an application we obtain strong laws under trimming for piecewise expanding interval maps.
- Another application of these results gives strong laws under trimming for subshifts of finite type, see [Kesseböhmer and S., 2019a].

2 The example
$$\mathbb{P}(X_1 > x) = L(x)/x$$

3 The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0,1)$

• The i.i.d. case

(

- The dynamical systems case
- Mean convergence

• The strong law of large nubmers or Birkhoff's ergodic theorem give for i.i.d. or ergodic and identically distributed, integrable random variables

$$\lim_{n\to\infty}\frac{S_n}{\mathbb{E}\left(S_n\right)}=1 \text{ a.s.}$$

• The strong law of large nubmers or Birkhoff's ergodic theorem give for i.i.d. or ergodic and identically distributed, integrable random variables

$$\lim_{n\to\infty}\frac{S_n}{\mathbb{E}\left(S_n\right)}=1 \text{ a.s.}$$

 In the generalized case for non-integrable random variables we obtain a strong law after trimming, i.e. there exists a (possibly constant) sequence of natural numbers (b_n) and a norming sequence (d_n) fulfilling

$$\lim_{n \to \infty} \frac{S_n^{b_n}}{d_n} = 1 \text{ a.s.}$$
 (5)

• The strong law of large nubmers or Birkhoff's ergodic theorem give for i.i.d. or ergodic and identically distributed, integrable random variables

$$\lim_{n\to\infty}\frac{S_n}{\mathbb{E}\left(S_n\right)}=1 \text{ a.s.}$$

 In the generalized case for non-integrable random variables we obtain a strong law after trimming, i.e. there exists a (possibly constant) sequence of natural numbers (b_n) and a norming sequence (d_n) fulfilling

$$\lim_{n \to \infty} \frac{S_n^{b_n}}{d_n} = 1 \text{ a.s.}$$
 (5)

• Can we say anything about the norming sequence (d_n) ?

• The strong law of large nubmers or Birkhoff's ergodic theorem give for i.i.d. or ergodic and identically distributed, integrable random variables

$$\lim_{n\to\infty}\frac{S_n}{\mathbb{E}\left(S_n\right)}=1 \text{ a.s.}$$

 In the generalized case for non-integrable random variables we obtain a strong law after trimming, i.e. there exists a (possibly constant) sequence of natural numbers (b_n) and a norming sequence (d_n) fulfilling

$$\lim_{n \to \infty} \frac{S_n^{b_n}}{d_n} = 1 \text{ a.s.}$$
 (5)

- Can we say anything about the norming sequence (d_n) ?
- In general: No!

Even for i.i.d. random variables there are examples for which (5) holds but $\mathbb{E}(S_n^{b_n}) = \infty$, see [Kesseböhmer and S., 2019c, Remark 3].

The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0, 1)$

Mean convergence

The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0, 1)$

Mean convergence

The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0, 1)$

Mean convergence

The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0, 1)$

Mean convergence

[Kesseböhmer and S., 2019b] gives general conditions for mean convergence for the case F(x) = 1 − L(x)/x^α, L slowly varying, 0 < α < 1.

- [Kesseböhmer and S., 2019b] gives general conditions for mean convergence for the case F(x) = 1 − L(x)/x^α, L slowly varying, 0 < α < 1.
- If (X_n) are either independent or $X_n = f \circ T^{n-1}$ with f sufficiently regular and T a piecewise expanding interval map and (X_n) are exponentially fast ψ -mixing and additionally we have for (b_n) and (d_n) that

$$\lim_{n o\infty}rac{S_n^{b_n}}{d_n}=1$$
 a.s.

then we also have mean convergence.
Strong laws under trimming - a comparison between iid random variables and dynamical systems The example $\mathbb{P}(X_1 > x) = L(x)/x^{\alpha}$, $\alpha \in (0, 1)$ Mean convergence

- [Kesseböhmer and S., 2019b] gives general conditions for mean convergence for the case F(x) = 1 − L(x)/x^α, L slowly varying, 0 < α < 1.
- If (X_n) are either independent or $X_n = f \circ T^{n-1}$ with f sufficiently regular and T a piecewise expanding interval map and (X_n) are exponentially fast ψ -mixing and additionally we have for (b_n) and (d_n) that

$$\lim_{n o\infty}rac{S_n^{b_n}}{d_n}=1$$
 a.s.

then we also have mean convergence.

• As seen before the ψ -mixing property is essential.

Strong laws under trimming - a comparison between iid random variables and dynamical systems Bibliography

Journal of Theoretical Probability, 32(2): 702–720.

Strong laws under trimming - a comparison between iid random variables and dynamical systems Bibliography

Kesten, H. and Maller R. (1992).

Ratios of Trimmed Sums and Order Statistics. The Annals of Probability, 20(4):1805–1843. S. (2018).

1

Trimmed sums for observables on the doubling map.

preprint: arXiv:1810.03223.