Optimal balance for geophysical flows and spontaneous wave emission

Gökce Tuba Masur, Marcel Oliver

Jacobs University Bremen

7th Bremen Summer School and Symposium Dynamical systems - pure and applied

August 5 - 9, 2019

The rotating shallow water model

Primitive variables:

Velocity and height fields: (\boldsymbol{u}, h) .

Geostrophic balance:

$$arepsilon \ll 1$$
 , $oldsymbol{u}_G = oldsymbol{
abla}^\perp h$.

Non-dimensional model:

$$\begin{split} \varepsilon \left(\partial_t \boldsymbol{u} \ + \ \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}\right) + \boldsymbol{u}^{\perp} + \boldsymbol{\nabla} h &= 0 \,, \\ \partial_t h + \boldsymbol{\nabla} \cdot \left(h \boldsymbol{u}\right) + h_0 \, \boldsymbol{\nabla} \cdot \, \boldsymbol{u} &= 0 \,, \end{split}$$

$$h_0 = \frac{H_0}{H}, \quad T = \frac{L}{U}, \quad \varepsilon = \frac{U}{fL}.$$

Semi-geostrophic scaling:

$$h=O(1)$$
 , $t=O(1/\varepsilon)$.

Optimal balance

Underlying idea:

- Build a "slow manifold", $(\delta, \gamma) = F(q)$,
- slow deformation to the linear shallow water equations,
- ramp function $\rho: [0,1] \rightarrow [0,1].$

Optimal balance model: The boundary value problem

$$\varepsilon(\partial_t \boldsymbol{u} + \rho(t/T) \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}) + \boldsymbol{u}^{\perp} + \boldsymbol{\nabla} h = 0, \partial_t h + \rho(t/T) \boldsymbol{\nabla} \cdot (h\boldsymbol{u}) + h_0 \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0,$$

with linear-end and nonlinear-end boundary conditions,

$$\mathbb{P}_G(\hat{\boldsymbol{u}}, \hat{h}) = 0, \qquad q(T) = q.$$

Gottwald, Mohammad, Oliver (2017).

Linear-end boundary condition

Task: Build projection matrices to decompose (\boldsymbol{u},h) . Linear model: At t=0,

> $\varepsilon \partial_t \boldsymbol{u} + \boldsymbol{u}^{\perp} + \boldsymbol{\nabla} h = 0,$ $\partial_t h + h_0 \, \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0,$

• for spectral representation $\hat{\pmb{z}} = (\hat{u}, \hat{v}, \hat{h})$:

$$\frac{\partial}{\partial t} \hat{\boldsymbol{z}} = iA\hat{\boldsymbol{z}} \,, \quad A = \begin{bmatrix} 0 & -i/\varepsilon & -k/\varepsilon \\ i/\varepsilon & 0 & -l/\varepsilon \\ -h_0k & -h_0l & 0 \end{bmatrix} \,,$$

- Rossby (geostrophic) mode: $w_0 = 0$, and gravity-wave (ageostrophic) modes: $w_{1,2}^2 = (\varepsilon h_0 (k+l)^2 + 1)/\varepsilon^2$,
- define projections \mathbb{P}_R and $\mathbb{P}_G = (I \mathbb{P}_R)$:

$$\hat{z} = \mathbb{P}_G \hat{z} + \mathbb{P}_R \hat{z} \,.$$

Primitive and geostrophic-ageostrophic variables

Task:
$$(\boldsymbol{u}, h) \Rightarrow (q, \delta, \gamma)$$

Geostrophic variable:

$$q = \frac{\varepsilon \boldsymbol{\nabla}^{\perp} \cdot \boldsymbol{u} + 1}{h_0 + h}$$

$$\delta = \boldsymbol{\nabla} \cdot \boldsymbol{u}$$
$$\gamma = \boldsymbol{\nabla}^{\perp} \cdot \boldsymbol{u} - \Delta h$$

Task:
$$(q, \delta, \gamma) \Rightarrow (\boldsymbol{u}, h)$$

PV inversion equations:

$$(-q + \varepsilon \Delta)h = -\varepsilon \gamma + qh_0 - 1,$$

$$\begin{split} \boldsymbol{u} &= \boldsymbol{\nabla}^{\perp} \boldsymbol{\psi} + \boldsymbol{\nabla} \boldsymbol{\phi} + \bar{\boldsymbol{u}}, \\ \Delta \boldsymbol{\psi} &= \boldsymbol{\zeta}, \qquad \Delta \boldsymbol{\phi} = \boldsymbol{\delta}. \end{split}$$

4 / 8

Optimal balance algorithm

Diagnosed imbalances I(T) for $\varepsilon = 0.1$

$$arepsilon=2^{-m/2}$$
, $m=2,\cdots,11$

Diagnosed imbalances $I(\varepsilon)$, $\varepsilon t = 0.03$

I(arepsilon) for different ramp functions ho, arepsilon t=0.06

Conclusion

- Longer ramp time T up to optimal value provides smaller I.
- The method works with balance state q and oblique projection at optimal computational effort.
- Linear BCs (oblique and orthogonal projection) have an impact on the process but not on the solution that the algorithm converges.
- Cosine ramp function excites smaller imbalances for middle-range ε values.