On Non-Linear Pseudo Anosov map and parabolic flows

P. Giulietti

Scuola Normale Superiore Centro di Ricerca Matematica "Ennio de Giorgi" Pisa - Italy

7th Bremen Summer School and Symposium Bremen - August 5, 2019

P. Giulietti

A cohomological equation prologue

Let V ∈ C^r(M) vector field. Let φ_t be the flow defined by the differential equation

$$\frac{d}{dt}(\phi_t(x)) = V(\phi_t(x)).$$

Given $g:M
ightarrow\mathbb{R},$ we would like to study the growth of

$$H_{x,t}(g) := \int_0^t ds \, g \circ \phi_s(x).$$

• If there exists an $h: M \to \mathbb{R}$ such that

$$h \circ \phi_t - h = \int_0^t ds \, g \circ \phi_s$$
 then $g = \langle V, \nabla h \rangle$.

- It can be used to classify flows w.r.t. reparametrizations.
- Suppose ϕ_t is uniquely ergodic. If $\mu(g) \neq 0$ then $H_{x,t}(g) \sim t\mu(g)$. If $\mu(g) = 0$?
- The growth of $H_{x,t}(g)$ is not a topological invariant.

A Special choice of V

- Let $F : \mathbb{T}^2 \to \mathbb{T}^2$ be an Anosov diffeomorphism. Let $V(x) = E_F^s(x)$ i.e. its stable normalized vector field.
- $\{\phi_t(x)\}_{t\in I}$ is a piece of the stable manifold for F, thus

$$F^n(\phi_t(x)) = \phi_{\tau_n(x,t)}(F^n(x))$$

Key fact

$$H_{x,t}(g) = \int_0^t ds \, g \circ F^{-n} \circ F^n \circ \phi_s(x) = H_{F^n(x),\tau_n(x,t)}(\mathcal{L}_F^n g).$$

- \mathcal{L}_F is a transfer operator, $\tau_n(x, t)$ is the rescaled time.
- *L_F* is quasi-compact on *B^{p,q}*: an anisotropic Banach space of distributions which are *p* regular in the unstable direction and are integrated *q* times along the stable one.

・ロン ・四 と ・ ヨ と ・ 日 と

Theorem (G. - Liverani '14)

Given p + q large, $\exists N_1$ obstructions $\{O_i\}_{i=1}^{N_1}$, sets \mathbb{V}_k , $k \leq N_1$ s.t.

$$\mathbb{V}_k := \{g \in \mathcal{C}^r(\mathbb{T}^2,\mathbb{C}) \hspace{0.1 in} : \hspace{0.1 in} O_j(g) = 0 \hspace{0.1 in} orall j < k \hspace{0.1 in} ; O_k(g)
eq 0 \}.$$

Then $\exists C > 0$ such that, for all $x \in \mathbb{T}^2$ and $g \in \mathbb{V}_k$, we have

$$|H_{x,t}(g)| \leq C t^{\alpha_k} (\ln t)^{b_k} \|g\|_{\mathcal{C}^r}$$

s.t. α_k , b_k are given by the spectral data of \mathcal{L}_F .

Remark: In the toy model of a Torus, given an Anosov diffeomorphism, there are no such deviations from linear growth. (Forni '19, Baladi '19)

The vertical flow of a "Linear" Pseudo-Anosov Map

Setup

- X compact connected surface, genus g, Σ singularities.
- F pseudo-Anosov map, $\lambda > 1$ constant expansion, preserving orientation.
- ϕ_t be the vertical flow, $f \in Obs(M \setminus \Sigma)$.

Theorem (Faure-Gouëzel-Lanneau '18)

Assuming $f \in C_h^2$ and $\omega(f) = 0, \forall \omega \in O_{\lambda,0}(\mathcal{L}_F)$ then there exists $F \in C^0$ such that $\int_0^{\tau} f(\phi_t x) dt = F(x) - F(\phi_{\tau}(x))$

(4回) 4 注) 4 注) 三注

The vertical flow of a "Linear" Pseudo-Anosov Map

Setup

- X compact connected surface, genus g, Σ singularities.
- F pseudo-Anosov map, $\lambda>1$ constant expansion, preserving orientation.
- ϕ_t be the vertical flow, $f \in Obs(M \setminus \Sigma)$.

Theorem (Faure-Gouëzel-Lanneau '18)

Assuming $f \in C_h^{k+2}$ and $\omega(f) = 0, \forall \omega \in O_{\lambda,k}(\mathcal{L}_T)$ then there exists $F \in C_h^k$ along the horizontal direction and extends continuously to M such that

$$\int_0^\tau f(\phi_t x) dt = F(x) - F(\phi_\tau(x))$$

Linear functionals $O_{\lambda,k}$: combination of transfer operator eigendistributions and eigenvalues of F^* on H_1 .

Setup

- X compact connected surface, genus g, Σ singularities.
- F "perturbation" of a pseudo-Anosov map.
- φ_t(x) be the acceleration flow related to E_s(x), x ∈ M \ Σ.
 f ∈ Obs(M \ Σ).

Theorem (Artigiani, G. '19)

Assuming f is sufficiently regular and $\omega(f) = 0, \forall \omega \in O_{\lambda,0}(\mathcal{L}_F)$ then there exists $F \in C^0$ such that $\int_0^{\tau} f(\phi_t x) dt = F(x) - F(\phi_{\tau}(x)).$

Setup

- X compact connected surface, genus g, Σ singularities.
- F "perturbation" of a pseudo-Anosov map.
- $\phi_t(x)$ be the acceleration flow related to $E_s(x), x \in M \setminus \Sigma$. $f \in Obs(M \setminus \Sigma)$.

Theorem (Artigiani, G. '19)

Assuming f is sufficiently regular and $\omega(f) = 0, \forall \omega \in O_{\lambda,Lip}(\mathcal{L}_F)$ then there exists F Lipschitz along the contracting leaf at x such that $\int_0^{\tau} f(\phi_t x) dt = F(x) - F(\phi_{\tau}(x)).$

Artigiani, G. (WIP)

- If one tries to study the vertical flow on a generic surface unluckily the Renormalization equation does not hold (as the surface is not a fixed point for the Teichmüller flow).
- The integral of an observable along the vertical flow can be decomposed, approximately, by bits living on regular surfaces.
- The Pseudo-Anosov maps which renormalize each bit are all linear and close to each other. They can be considered perturbations of each other, "one" functional space $\mathcal{B}^{p,q}$ is sufficient.